Sweep-stick mechanism of heavy particle clustering in fluid turbulence.

نویسندگان

  • Susumu Goto
  • J C Vassilicos
چکیده

It is proposed that the inertial range clustering of small heavy particles in fluid turbulence occurs as a result of the sweep-stick mechanism which causes inertial particles to cluster so as to mimic the clusters of points where the fluid acceleration is perpendicular to the direction of highest contraction between neighboring particles. Direct numerical simulations of inertial particles subjected to linear Stokes drag and suspended in homogeneous isotropic turbulence support the validity of the sweep and stick properties on which the sweep-stick mechanism is based, and also support the clustering consequences of this mechanism. It also explains the observed Stokes-number dependence of inertial particle clustering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial clustering of polydisperse inertial particles in turbulence: I. Comparing simulation with theory

Particles that are heavy compared to the fluid in which they are embedded (inertial particles) tend to cluster in turbulent flow, with the degree of clustering depending on the particle Stokes number. The phenomenon is relevant to a variety of systems, including atmospheric clouds; in most realistic systems particles have a continuous distribution of sizes and therefore the clustering of ‘polyd...

متن کامل

Gravity-driven enhancement of heavy particle clustering in turbulent flow.

Heavy particles suspended in a turbulent flow settle faster than in a still fluid. This effect stems from a preferential sampling of the regions where the fluid flows downward and is quantified here as a function of the level of turbulence, of particle inertia, and of the ratio between gravity and turbulent accelerations. By using analytical methods and detailed, state-of-the-art numerical simu...

متن کامل

Spatial clustering of polydisperse inertial particles in turbulence: II. Comparing simulation with experiment

Particles that are heavy compared to the fluid in which they are embedded (inertial particles) tend to cluster in turbulent flow, with the degree of clustering depending on the particle Stokes number. The phenomenon is relevant to a variety of multiphase flows, including atmospheric clouds; in most realistic systems, particles have a continuous distribution of sizes and therefore the clustering...

متن کامل

Inertial clustering of particles in high-Reynolds-number turbulence.

We report experimental evidence of spatial clustering of dense particles in homogenous, isotropic turbulence at high Reynolds numbers. The dissipation-scale clustering becomes stronger as the Stokes number increases and is found to exhibit similarity with respect to the droplet Stokes number over a range of experimental conditions (particle diameter and turbulent energy dissipation rate). These...

متن کامل

Tangling clustering of inertial particles in stably stratified turbulence.

We have predicted theoretically and detected in laboratory experiments a tangling clustering of inertial particles in a stably stratified turbulence with imposed mean vertical temperature gradient. In the stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, i.e., the inertial particles are accumulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 100 5  شماره 

صفحات  -

تاریخ انتشار 2008